
Equation in Different forms and Slope of Line

1.	The equation of the straight line which passes through the pc	int (1,-2) and cuts off equal inte	ercepts from axes, is [MNR 1978]
	(a) $x + y = 1$ (b) $x - y = 1$	(c) $x + y + 1 = 0$	(d) $x - y - 2 = 0$
2.	Equation of the straight line making equal intercepts on the a	xes and passing through the po	bint (2, 4) is [Karnataka CET 2004]
	(a) $4x - y - 4 = 0$ (b) $2x + y - 8 = 0$	(c) $x + y - 6 = 0$	(d) $x + 2y - 10 = 0$
3.	In the equation $y - y_1 = m(x - x_1)$ if m and x_1 are fixed and di	fferent lines are drawn for diffe	rent values of y_1 , then [MP PET 1986]
	(a) The lines will pass through a single point	(b) There will be a set of pa	rallel lines
	(c) There will be one line only	(d) None of these	
4.	The equation of the straight line passing through the point (3	2) and perpendicular to the lin	ie y = x is [MNR 1979; MP PET 2002]
	(a) $x - y = 5$ (b) $x + y = 5$	(c) $x + y = 1$	(d) $x - y = 1$
5.	The equation of the line perpendicular to the line $\frac{x}{a} - \frac{y}{b} = 1$ and	passing through the point at whi	ch it cuts <i>x-a</i> xis, is [Rajasthan PET 1996]
	(a) $\frac{x}{a} + \frac{y}{b} + \frac{a}{b} = 0$ (b) $\frac{x}{b} + \frac{y}{a} = \frac{b}{a}$	(c) $\frac{x}{b} + \frac{y}{a} = 0$	(d) $\frac{x}{b} + \frac{y}{a} = \frac{a}{b}$
6.	The equation of the line passing through the point (1, 2) and μ	perpendicular to the line $x + y + y$	-1 = 0 is [MNR 1981]
	(a) $y - x + 1 = 0$ (b) $y - x - 1 = 0$	(c) $y - x + 2 = 0$	(d) $y - x - 2 = 0$
7.	If the equations $y = mx + c$ and $x \cos \alpha + y \sin \alpha = p$ represent	the same straight line, then	
	(a) $p = c \sqrt{1 + m^2}$ (b) $c = p \sqrt{1 + m^2}$	(c) $cp = \sqrt{1+m^2}$	(d) $p^2 + c^2 + m^2 = 1$
8.	A line passes through the point of intersection of $2x + y = 5$ a	nd $x + 3y + 8 = 0$ and parallel to	the line $3x + 4y = 7$ is
			[Rajasthan PET 1984; MP PET 1991]
	(a) $3x + 4y + 3 = 0$ (b) $3x + 4y = 0$	(c) $4x - 3y + 3 = 0$	(d) $4x - 3y = 3$
9.	The equation of straight line passing through the intersection	of the lines $x - 2y = 1$ and $x + 2y = 1$	3y = 2 and parallel to $3x + 4y = 0$ is
			[MP PET 2000]
	(a) $3x + 4y + 5 = 0$ (b) $3x + 4y - 10 = 0$	(c) $3x + 4y - 5 = 0$	(d) $3x + 4y + 6 = 0$
10.	The equation of the line joining the origin to the point (–4, 5)	is	[MP PET 1984]

CLICK HERE

(»

Basic Level

	Straight Line							
	(a) $5x + 4y = 0$	(b)	3x + 4y = 2	(C)	5x - 4y = 0	(d)	4x - 5y = 0	
11.	The equation of the line wh	nich cu	ts off an intercept 3 units o	n <i>OX</i> ar	nd an intercept –2 unit o	on <i>OY,</i>	is	
	(a) $\frac{x}{3} - \frac{y}{2} = 1$	(b)	$\frac{x}{3} + \frac{y}{2} = 1$	(C)	$\frac{x}{2} + \frac{y}{2} = 1$	(d)	$\frac{x}{2} - \frac{y}{2} = 1$	
12.	The equation of a line throu		5 2		2 5		2 3 PET 1981, 84, 86; MP	DET 108/1
۱ <u>८</u> .								1211304j
	(a) $4x + 3y = 24$	(D)	y - 4 = x + 3	(C)	3y - 4x = 24	(D)	y+4 = -(x-3)	
13.	Equation of the line passing	g throu	ugh (1, 2) and parallel to the	line y	=3x-1 is			[MP PET 1984]
	(a) $y + 2 = x + 1$	(b)	y + 2 = 3(x + 1)	(C)	y - 2 = 3(x - 1)	(d)	y - 2 = x - 1	
14.	Equation of the line passing	g throu	ugh (–1, 1) and perpendicula	r to the	e line $2x + 3y + 4 = 0$ is			[MP PET 1984]
	(a) $2(y-1) = 3(x+1)$	(b)	3(y-1) = -2(x+1)	(C)	y-1 = 2(x+1)	(d)	3(y-1) = x+1	
15.	The equation of line passing	g thro	ugh (<i>c, d</i>) and parallel to <i>ax</i>	: + <i>by</i> +	c = 0 is		[Raj	asthan PET 1987]
	(a) $a(x+c)+b(y+d) = 0$	(b)	a(x+c) - b(y+d) = 0	(C)	a(x-c)+b(y-d)=0	(d)	None of these	
16.	The equation of a line throu	ugh	the intersection of lines x	=0 and	d $y = 0$ and through the	e point	(2,2) is	[MP PET 1984]
	(a) $y = x - 1$	(b)	y = -x	(C)	y = x	(d)	y = -x + 2	
17.	Equation of a line through	the ori	gin and perpendicular to th	ie line jo	pining (a , 0) and ($-a$, 0)	is		[MP PET 1984]
	(a) $y = 0$	(b)	x = 0	(c)	x = -a	(d)	y = -a	
18.	For what values of <i>a</i> and <i>b</i>	the int	ercepts cut off on the coord	dinate a	axes by the line $ax + by$	+8 = 0	are equal in lengt	h but
	opposite in signs to those c	cut off	by the line $2x - 3y + 6 = 0$	on the a	axes			
	(a) $a = \frac{8}{3}, b = -4$	(b)	$a = -\frac{8}{3}, b = -4$	(C)	$a = \frac{8}{3}, b = 4$	(d)	$a = -\frac{8}{3}, b = 4$	
19.	For specifying a straight line	e how	many geometrical paramet	ers sho	uld be known		5	[MP PET 1982]
	(a) 1	(b)		(C)		(d)	3	
20.	The equation of line passing							0) is
20.		gano		inte 54		10		asthan PET 1987]
	(a) $x - y = \pi$	(b)	$x - y = \pi(y + 1)$	(c)	$x - y = \pi(1 - y)$	(d)	$x + y = \pi(1 - y)$	
21.	A line perpendicular to the							
				eug. (asthan PET 1988; MP	PET 1995]
	(a) $bx - ay + (a^2 - b^2) = 0$	(b)	$bx - ay - (a^2 - b^2) = 0$	(C)	bx - ay = 0		None of these	-
22.	If the line passing through		-		-		asthan PET 1985; MP	PET 1999]
	(a) -1	(b)		(C)		(d)		-
23.	The line passes through (1,0	D) and	$(-2,\sqrt{3})$ makes an angle of	. ,				asthan PET 1985]
	(a) 60°		120°		150°	(d)	135 <i>°</i>	
24.	If <i>a</i> and <i>b</i> are two arbitrary	. ,		. ,				
						, p	-	asthan PET 1990]
	(a) (-1,-2)	(b)	(1, 2)	(c)	(-2,-3)	(d)	(2,3)	
25.	The equation of line passing							rallel to the
	line $2y - 3x + 2 = 0$, is	90					-	PET 1985,86, 88]
							Li cilasci all	

r www.studentbro.in

r www.studentbro.in

(a) $x - y - 10$ 27. The straight line (a) $5x - 4y =$ 28. The equation is (a) $x \cos \theta - \frac{1}{2}$ (c) $x \sin \theta +$ 29. Equation of the (a) $4x - 3y =$ 30. Equations of line (a) $y \pm x = 0$ 31. Equation of line (a) $3y = 4x -$ 32. The equation (a) $x - 2y = 4$ 33. A straight line (a) $x + 2y = 4$ 34. The equation perpendicular (a) $5x + 3y +$ 35. The opposite 2 (b) $3x - y - 1$ 36. If the straight (a) In A.P.		$3x - 2y = 1 \tag{(}$	(C)	2x - 3y = 1	(d)	2x - y = 1	
27. The straight line (a) $5x - 4y =$ 28. The equation is (a) $x \cos \theta - \frac{1}{2}$ (c) $x \sin \theta +$ 29. Equation of the (a) $4x - 3y =$ 30. Equations of line (a) $y \pm x = 0$ 31. Equation of line (a) $3y = 4x -$ 32. The equation (a) $x - 2y = 4$ 33. A straight line (a) $x + 2y = 4$ 34. The equation perpendicular (a) $5x + 3y +$ 35. The opposite 2 2) is (a) $3x - y - 1$ 16 the straight (a) In A.P.		ough (4, –6) and makes an angle	45 <i>°</i>	with positive <i>x</i> -axis, is		[Raja	sthan PET 1984
(a) $5x - 4y =$ (a) $5x - 4y =$ The equation is (a) $x \cos \theta - y$ (c) $x \sin \theta +$ 29. Equation of the (a) $4x - 3y =$ 30. Equations of linit inclined to the (a) $y \pm x = 0$ 31. Equation of linit (a) $3y = 4x -$ 32. The equation (a) $x - 2y = 4$ 33. A straight line (a) $x + 2y = 4$ 34. The equation perpendicular (a) $5x + 3y +$ 35. The opposite 2 2) is (a) $3x - y - 1$ 16 the straight (a) In A.P.	y - 10 = 0 (b)	$x - 2y - 16 = 0 \tag{(}$	(C)	x - 3y - 22 = 0	(d)	None of these	
8. The equation is (a) $x \cos \theta - \frac{1}{2}$ (c) $x \sin \theta + \frac{1}{2}$ 9. Equation of the (a) $4x - 3y = \frac{1}{2}$ 0. Equations of himilian inclined to the (a) $y \pm x = 0$ 1. Equation of himilian inclined to the (a) $y \pm x = 0$ 1. Equation of himilian inclined to the (a) $3y = 4x - \frac{1}{2}$ 2. The equation of himilian inclined to the (a) $3y = 4x - \frac{1}{2}$ 3. A straight line (a) $x - 2y = \frac{1}{2}$ 4. The equation perpendicular (a) $5x + 3y + \frac{1}{2}$ 5. The opposite $\frac{1}{2}$ (a) $3x - y - 1$ 6. If the straight (a) In A.P.	ight line passes through	the point of intersection of the	straig	ght lines $x + 2y - 10 = 0$ a	Ind	2x + y + 5 = 0, is	[IIT 1983
is (a) $x \cos \theta - \frac{1}{2}$ (c) $x \sin \theta + \frac{1}{29}$. Equation of the (a) $4x - 3y = \frac{1}{29}$ 20. Equations of limits (a) $y \pm x = 0$ 21. Equation of limits (a) $3y = 4x - \frac{1}{29}$ 22. The equation (a) $x - 2y = \frac{1}{29}$ 23. A straight line (a) $x + 2y = \frac{1}{29}$ 24. The equation perpendicular (a) $5x + 3y + \frac{1}{29}$ 25. The opposite $\frac{1}{29}$ 20. If the straight (a) $1n A.P.$	-4y = 0 (b)	$5x + 4y = 0 \tag{(}$	(C)	4x - 5y = 0	(d)	4x + 5y = 0	
(a) $x \cos \theta - \frac{1}{2}$ (c) $x \sin \theta + \frac{1}{2}$ Equation of the (a) $4x - 3y = \frac{1}{2}$ Equations of linit inclined to the (a) $y \pm x = 0$ 1. Equation of linit (a) $3y = 4x - \frac{1}{2}$ 2. The equation (a) $x - 2y = \frac{1}{2}$ 3. A straight line (a) $x + 2y = \frac{1}{2}$ 4. The equation perpendicular (a) $5x + 3y + \frac{1}{2}$ 5. The opposite $\frac{1}{2}$ (a) $3x - y - 1$ (b) $3x - y - 1$ 16. If the straight (a) In A.P.	ation to the straight line	passing through the point $(a \cos a)$	$s^3 \theta$,	$a\sin^3 \theta$) and perpendicul	ar to	the line $x \sec \theta + \frac{1}{2}$	ycosec $\theta = a$,
(c) $x \sin \theta +$ 9. Equation of the (a) $4x - 3y =$ 0. Equations of linit inclined to the (a) $y \pm x = 0$ 1. Equation of linit (a) $3y = 4x -$ 2. The equation (a) $x - 2y = 4$ 3. A straight line (a) $x + 2y = 5$ 4. The equation perpendicular (a) $5x + 3y +$ 5. The opposite of (b) $2x + 3y +$ 5. The opposite of (c) $3x - y - 1$ 6. If the straight (c) $x + 2y = 5$ (c) $3x - y - 1$ (c) 3							
(c) $x \sin \theta +$ (c) $x \sin \theta +$ (a) $4x - 3y =$ (c) Equation of the (a) $y \pm x = 0$ (c) Equations of linit (c) $y \pm x = 0$ (c) Equation of linit (c) $3y = 4x -$ (c) $3y = 4x -$ (c) $x - 2y = 4$ (c) $x - 2y = 4$ (c) $x + 2y = 5$ (c) $5x + 3y +$ (c) $5x + 3y +$ (c) $5x + 3y +$ (c) $5x + 3y +$ (c) $3x - y - 1$ (c) $3x - y - 1$ (c) $3x - y - 1$ (c) $16x + 2y = 5$ (c) $3x - y - 1$ (c) $16x + 2y = 5$ (c) $3x - y - 1$ (c) $3x $							[AMU 197
29. Equation of the (a) $4x - 3y =$ 30. Equations of limit inclined to the (a) $y \pm x = 0$ 31. Equation of limit (a) $3y = 4x -$ 32. The equation (a) $x - 2y = 4$ 33. A straight line (a) $x + 2y = 4$ 34. The equation perpendicular (a) $5x + 3y +$ 35. The opposite 2 36. (a) $3x - y - 1$ 36. If the straight (a) $\ln A.P.$	$\cos \theta - y \sin \theta = a \cos 2\theta$	($x\cos\theta + y\sin\theta = a\cos 2\theta$	7		
(a) $4x - 3y =$ (a) $4x - 3y =$ (b) Equations of linit inclined to the equation of linit (a) $y \pm x = 0$ (a) $y \pm x = 0$ (b) Equation of linit (a) $3y = 4x - 3x - 2y = 4x$ (c) $x - 2y = 4x - 3x - 2y = 4x$ (c) $x - 2y = 4x - 3x - 2y = 4x$ (c) $x - 2y = 4x - 3x - 2y = 4x$ (c) $x - 2y = 4x - 3x - 2y = 4x - 3x - 2y = 4x$ (c) $x - 2y = 4x - 3x - 3x - 2y = 4x - 3x -$	$\sin\theta + y\cos\theta = a\cos 2\theta$	· · · · · · · · · · · · · · · · · · ·		None of these			
30.Equations of linclined to the inclined to the (a) $y \pm x = 0$ 31.Equation of lin (a) $3y = 4x - 3x - 3y = 4x - 3x$ 32.The equation (a) $x - 2y = 4x - 3x - 3x -$	1 of the right bisector of	the line segment joining the point	nts (7	7, 4) and (−1, −2) is			[AMU 1979
inclined to the (a) $y \pm x = 0$ (a) $3y \pm x = 0$ (c) Equation of lin (a) $3y = 4x - 3$ (c) The equation (a) $x - 2y = 4$ (c) $x + 2y = 4$ (c) $5x + 3y + 3$ (c) $5x + 3y + 3$ (c	-3y = 15 (b)	$3x + 4y = 15 \tag{(}$	(C)	4x + 3y = 15	(d)	None of these	
(a) $y \pm x = 0$ Equation of lin (a) $3y = 4x - 3x - 3y = 4x - 3x - 3y = 4x - 3x - 3y = 4x - 3x -$	-	hrough the points of intersection	n of t	the lines $4x - 3y - 1 = 0$ a	and	2x - 5y + 3 = 0 and	l are equally
A1.Equation of lin (a) $3y = 4x -$ B2.The equation (a) $x - 2y = 4$ B3.A straight line (a) $x + 2y = 4$ B4.The equation perpendicular (a) $5x + 3y +$ B5.The opposite 2) isB6.If the straight (a) In A.P.	to the axes are						[AMU 198
(a) $3y = 4x - 32$. The equation (a) $x - 2y = 4$ (b) $x - 2y = 4$ (c) $x + 2y = 5$ (c) $x + 3y + 5$ (c) $5x + 5$ (c)	$x = 0 \tag{b}$	$y - 1 = \pm 1(x - 1)$ ((C)	$x-1 = \pm 2(y-1)$	(d)	None of these	
2.The equation (a) $x - 2y = 4$ 3.A straight line (a) $x + 2y = 4$ 4.The equation perpendicular (a) $5x + 3y + 4$ 5.The opposite $x = 2$ 2) is(a) $3x - y - 1$ 6.If the straight (a) In A.P.	ı of line passing through	(1, 2) and perpendicular to $3x +$	-4y+	-5 = 0 is		[Raja	sthan PET 199
(a) $x - 2y = 4$ (a) $x - 2y = 4$ (a) $x + 2y = 5$ (a) $x + 2y = 5$ (b) $x + 2y = 5$ (c) $x + 3y + 5$ (c) $5x + 5x + 5x + 5$ (c) $5x + 5x $	=4x-2 (b)	$3y = 4x + 3 \tag{(}$	(C)	3y = 4x + 4	(d)	3y = 4x + 2	
33.A straight line (a) $x + 2y = 3$ 34.The equation perpendicular (a) $5x + 3y + 35$ 35.The opposite 2) is36.If the straight (a) In A.P.	ation of a straight line pa	assing through the points (–5, –6	5) and	d (3, 10) is			[MNR 1974
(a) $x + 2y = 3$ (a) $x + 2y = 3$ (b) $x + 2y = 3$ (c) $y + 2y$	2y = 4 (b)	$2x - y + 4 = 0 \tag{(}$	(C)	2x + y = 4	(d)	None of these	
44.The equation perpendicular (a) $5x + 3y +$ 55.The opposite 2) is(a) $3x - y - 1$ 36.If the straight (a) In A.P.	nt line through <i>P</i> (1, 2) is s	such that its intercept between th	ne ax	es is bisected at <i>P</i> . Its eq	uatio	on is	[EAMCET 1994
perpendicular (a) $5x + 3y + 3$	2y = 5 (b)	$x - y + 1 = 0 \tag{(}$	(C)	x + y - 3 = 0	(d)	2x + y - 4 = 0	
 (a) 5x + 3y + 5. The opposite 2) is (a) 3x - y - 1 6. If the straight (a) In A.P. 	ation to the straight line	passing through the point of int	ersed	ction of the lines $5x - 6y$	-1:	= 0 and 3x + 2y + 5	5 = 0 and
 5. The opposite (2) is (a) 3x - y - 1 6. If the straight (a) In A.P. 	licular to the line $3x - 5y$	v + 11 = 0 is					[MP PET 1994
 2) is (a) 3x - y - 1 36. If the straight (a) In A.P. 	+3y + 8 = 0 (b)	$3x - 5y + 8 = 0 \tag{(}$	(C)	5x + 3y + 11 = 0	(d)	3x - 5y + 11 = 0	
 (a) 3x - y - 1 36. If the straight (a) In A.P. 	osite vertices of a square	e are (1, 2) and (3, 8), then the eq	quatio	on of a diagonal of the so	quar	e passing through	the point (1,
6. If the straight (a) In A.P.							
36. If the straight (a) In A.P.							[Roorkee 198
(a) In A.P.	-y - 1 = 0 (b)	$3y - x - 1 = 0 \tag{(}$	(C)	3x + y + 1 = 0	(d)	None of these	
	aight line $ax + by + c = 0$	always passes through (1, -2), the	nen á	<i>a,b,c</i> , are			[AMU 2000
	P. (b)	In H.P. ((c) l	n G.P.	(d)	None of these	
7. The equation		joining the origin to the point of	f inte	rsection of $y - x + 7 = 0$ a	and	y + 2x - 2 = 0 is	[MP PET 200
(a) $3x + 4y =$		$3x - 4y = 0 \tag{(}$	(C)	4x - 3y = 0	(d)	4x + 3y = 0	
8. A straight line	ation of the straight line	f 125° with the wavie and auto	-axi	s at a distance –5 from th	ne o	rigin. The equatior	
(a) $2x + y + 5$	ation of the straight line	135° with the <i>x</i> -axis and cuts y					[MP PET 1998

	(a) 1	(b) –1	(c) 2	(d) –2
).	Equation of a line passin	g through (1, – 2) and perpe	endicular to the line $3x - 5y + 7 = 0$ i	s [Rajasthan PET 2003]
	(a) $5x + 3y + 1 = 0$	(b) $3x + 5y + 1 = 0$	(c) $5x - 3y - 1 = 0$	(d) $3x - 5y + 1 = 0$
•	The line $\frac{x}{a} - \frac{y}{b} = 1$ cuts	the <i>x</i> -axis at P. The equation	of the line through <i>P</i> perpendicular	r to the given line is [Kerala (Engg.) 2002
	(a) $x + y = ab$	(b) $x + y = a + b$	(c) $ax + by = a^2$	(d) $bx + ay = b^2$
	The equation of line per	pendicular to $x = c$ is		[Rajasthan PET 2001]
	(a) $y = d$	(b) $x = d$	(c) $x = 0$	(d) None of these
•	The inclination of the str is	aight line passing through th	ne point $(-3,6)$ and the midpoint of	the line joining the point (4, -5) and (-2 ,9)
	(a) π / 4	(b) $\pi / 6$	(c) π/3	[Kerala (Engg.) 2002] (d) 3π / 4
			bisected at the point (5, 2), then its	
•	(a) $5x + 2y = 20$	(b) $2x + 5y = 20$	(c) $5x - 2y = 20$	
	•	-	arallel to the line $2x + 3y - 7 = 0$ is	(d) 2x 3y = 20 [Rajasthan PET 1993, 96]
	(a) $2x + 3y - 5 = 0$	(b) $3x + 2y - 5 = 0$		(d) $2x + 3y + 5 = 0$
•			n and through the point of intersect	
•	2x - y + 1 = 0 is	nt me passing through ongi		
	2x y 1 = 0.15			
				[Rajasthan PET 1993]
	(a) $5x - y = 0$	(b) $5x + y = 0$	$(c) \qquad x+5y=0$	[Rajasthan PET 1993] (d) $x - 5y = 0$
			(c) $x + 5y = 0$ $(c^3)x + (c^3 - a^3)y + a^3 - b^3 = 0$ will replace the formula of the formul	(d) $x - 5y = 0$
				(d) $x-5y=0$ present the same line, if
	The equations $(b-c)x + c$		$(c^{3})x + (c^{3} - a^{3})y + a^{3} - b^{3} = 0$ will rep	(d) $x-5y=0$ present the same line, if
	The equations $(b-c)x +$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing	$(c-a)y + a - b = 0$ and $(b^3 - b) = 0$	(b) $b = c$ and $c = a$ and (d) $a + b + c \neq 0$ ection of the straight lines $x - 3y + 1$	(d) $x-5y=0$ present the same line, if
	The equations $(b-c)x +$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing	$(c-a)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$	(b) $b = c$ and $c = a$ and (d) $a + b + c \neq 0$ ection of the straight lines $x - 3y + 1$	(d) $x-5y=0$ oresent the same line, if d $a=b$ or $a+b+c=0$
	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$	$(c-a)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ through the point of interse of 2 units from the origin, have (b) $3x + y - 1 = 0$	(b) $b = c$ and $c = a$ and $(c^3)x + (c^3 - a^3)y + a^3 - b^3 = 0$ will rep (b) $b = c$ and $c = a$ and (d) $a + b + c \neq 0$ ection of the straight lines $x - 3y + 1$ as the equation	(d) $x - 5y = 0$ present the same line, if d $a = b$ or $a + b + c = 0$ = 0 and $2x + 5y - 9 = 0$ and having infinite (d) None of these
•	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$	$(c-a)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ through the point of interse of 2 units from the origin, have (b) $3x + y - 1 = 0$	(b) $b = c$ and $c = a$ and $(c^3)x + (c^3 - a^3)y + a^3 - b^3 = 0$ will represent the set of the straight lines $x - 3y + 1$ as the equation (c) $y = 1$	(d) $x - 5y = 0$ present the same line, if d $a = b$ or $a + b + c = 0$ = 0 and $2x + 5y - 9 = 0$ and having infinite (d) None of these
	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$ The equation of the line (a) $y = 3x - 9$	$(c-a)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ through the point of interse of 2 units from the origin, have (b) $3x + y - 1 = 0$ whose slope is 3 and which (b) $y = 3x + 3$	(b) $b = c$ and $c = a$ and (b) $b = c$ and $c = a$ and (c) $a + b + c \neq 0$ extremely the straight lines $x - 3y + 1$ as the equation (c) $y = 1cuts off an intercept 3 from the pose$	(d) $x-5y = 0$ present the same line, if d $a = b$ or $a+b+c = 0$ = 0 and $2x+5y-9 = 0$ and having infinite (d) None of these itive x-axis is (d) None of these
	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$ The equation of the line (a) $y = 3x - 9$	$(c-a)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ and $(b^3 - b)y + a - b = 0$ through the point of interse of 2 units from the origin, have (b) $3x + y - 1 = 0$ whose slope is 3 and which (b) $y = 3x + 3$ es which cuts off an intercept	$(c^3)x + (c^3 - a^3)y + a^3 - b^3 = 0$ will rep (b) $b = c$ and $c = a$ and (d) $a + b + c \neq 0$ extion of the straight lines $x - 3y + 1$ as the equation (c) $y = 1$ cuts off an intercept 3 from the pos (c) $y = 3x + 9$	(d) $x-5y = 0$ present the same line, if d $a = b$ or $a+b+c = 0$ = 0 and $2x+5y-9 = 0$ and having infinite (d) None of these itive x-axis is (d) None of these ned to the axes are
	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x=2$ The equation of the line (a) $y=3x-9$ The equations of the line	$(c-a)y + a - b = 0$ and $(b^3 - a)y + a - b = 0$ and $(b^3 - a)y + a - b = 0$ through the point of interse of 2 units from the origin, has (b) $3x + y - 1 = 0$ whose slope is 3 and which (b) $y = 3x + 3$ es which cuts off an intercept 1 = 0	$(c^3)x + (c^3 - a^3)y + a^3 - b^3 = 0$ will rep (b) $b = c$ and $c = a$ and (d) $a + b + c \neq 0$ ection of the straight lines $x - 3y + 1$ as the equation (c) $y = 1$ cuts off an intercept 3 from the pos (c) $y = 3x + 9$ t -1 from y-axis and are equally incli	(d) $x-5y = 0$ present the same line, if d $a = b$ or $a+b+c = 0$ = 0 and $2x+5y-9 = 0$ and having infinite (d) None of these itive x-axis is (d) None of these ned to the axes are
•	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$ The equation of the line (a) $y = 3x - 9$ The equations of the line (a) $x-y+1=0, x+y+$ (c) $x-y-1=0, x+y+$	$(c-a)y + a - b = 0$ and $(b^3 - a)y + a - b = 0$ and $(b^3 - a)y + a - b = 0$ through the point of interse of 2 units from the origin, have (b) $3x + y - 1 = 0$ whose slope is 3 and which (b) $y = 3x + 3$ es which cuts off an intercept 1 = 0 + 1 = 0	(b) b = c and c = a and	(d) $x-5y = 0$ present the same line, if d $a = b$ or $a+b+c = 0$ = 0 and $2x + 5y - 9 = 0$ and having infinite (d) None of these itive x-axis is (d) None of these ned to the axes are -1 = 0
•	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$ The equation of the line (a) $y = 3x - 9$ The equations of the line (a) $x-y+1=0, x+y+$ (c) $x-y-1=0, x+y+$	$(c-a)y + a - b = 0$ and $(b^3 - a)y + a - b = 0$ and $(b^3 - a)y + a - b = 0$ through the point of interse of 2 units from the origin, have (b) $3x + y - 1 = 0$ whose slope is 3 and which (b) $y = 3x + 3$ es which cuts off an intercept 1 = 0 + 1 = 0	$(b) b = c \text{ and } c = a \text{ and } c$ $(b) b = c \text{ and } c = a \text{ and } c$ $(c) a+b+c \neq 0$ $(c) y = 1$ $(c) y = 1$ $(c) y = 3x+9$ $(c) y = 3x+9$ $(c) x-y-1 = 0, x+y-1$ $(c) x-y-1 = 0, x+y-1$ $(c) x = 0$	(d) $x-5y = 0$ present the same line, if d $a = b$ or $a+b+c = 0$ = 0 and $2x + 5y - 9 = 0$ and having infinite (d) None of these itive x-axis is (d) None of these ned to the axes are -1 = 0
).).	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$ The equation of the line (a) $y = 3x - 9$ The equations of the line (a) $x - y + 1 = 0, x + y + (c)$ (b) $x - y - 1 = 0, x + y + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - (c) + (c) + (c)$ (c) $x - (c) + $	$(c-a)y + a - b = 0 \text{ and } (b^3 - a)y + a - b = 0 \text{ and } (b^3 - a)y + a - b = 0 \text{ and } (b^3 - a)y + a - b = 0 \text{ and } (b) 3x + y - 1 = 0 \text{ whose slope is 3 and which } (b) y = 3x + 3 \text{ es which cuts off an intercept}$ $1 = 0 \text{ and } (-1, 2) \text{ is divided}$ $(b) \frac{5}{7}$	$(c^{3})x + (c^{3} - a^{3})y + a^{3} - b^{3} = 0 \text{ will rep}$ $(b) b = c \text{ and } c = a \text{ and}$ $(d) a + b + c \neq 0$ ection of the straight lines $x - 3y + 1$ as the equation $(c) y = 1$ cuts off an intercept 3 from the pose $(c) y = 3x + 9$ t -1 from <i>y</i> -axis and are equally incliantly inclined by the lines internally in the ratio 3:4 by the lines $(c) y = 3x + 9 = 1$	(d) $x-5y = 0$ present the same line, if d $a = b$ or $a+b+c = 0$ = 0 and $2x+5y-9 = 0$ and having infinite (d) None of these itive x-axis is (d) None of these ned to the axes are -1 = 0 e $x + 2y = k$, then k is (d) $\frac{31}{7}$
3.).	The equations $(b-c)x + (a)$ (a) $b+c=0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$ The equation of the line (a) $y = 3x - 9$ The equations of the line (a) $x - y + 1 = 0, x + y + (c)$ (b) $x - y - 1 = 0, x + y + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - (c) + (c) + (c)$ (c) $x - (c) + $	$(c-a)y + a - b = 0 \text{ and } (b^3 - a)y + a - b = 0 \text{ and } (b^3 - a)y + a - b = 0 \text{ and } (b^3 - a)y + a - b = 0 \text{ and } (b) 3x + y - 1 = 0 \text{ whose slope is 3 and which } (b) y = 3x + 3 \text{ es which cuts off an intercept} 1 = 0 \text{ and } (b) \frac{5}{7}$ $C(\sqrt{3}, \sqrt{3} + 2) \text{ be three vert} $	$(c) y = 3$ $(c) x - y - 1 = 0, x + y - y = 0$ $(c) x - y - 1 = 0, x + y - y = 0$ $(c) \frac{36}{7}$ $(c) \frac{36}{7}$	(d) $x-5y = 0$ present the same line, if d $a = b$ or $a+b+c = 0$ = 0 and $2x+5y-9 = 0$ and having infinite (d) None of these itive x-axis is (d) None of these ned to the axes are -1 = 0 e $x + 2y = k$, then k is (d) $\frac{31}{7}$
7. 3. 9.	The equations $(b-c)x + (a)$ (a) $b+c = 0$ (c) $a+b=0$ The straight line passing slope and at a distance of (a) $x = 2$ The equation of the line (a) $y = 3x - 9$ The equations of the line (a) $x - y + 1 = 0, x + y + (c)$ (b) $x - y - 1 = 0, x + y + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - y - 1 = 0, x + (c)$ (c) $x - (c) + (c)$ (c) $x - (c$	$(c-a)y + a - b = 0 \text{ and } (b^3 - a^3)$ through the point of interse of 2 units from the origin, have (b) $3x + y - 1 = 0$ whose slope is 3 and which (b) $y = 3x + 3$ es which cuts off an intercept 1 = 0 x + 1 = 0 (b) $\frac{5}{7}$ $C(\sqrt{3}, \sqrt{3} + 2)$ be three vert $\sqrt{3}$ (b) $y = 0$	(c) y = 3 (c) $x + (c^3 - a^3)y + a^3 - b^3 = 0$ will represent the equation (c) $b = c$ and $c = a$ and c (d) $a + b + c \neq 0$ (extion of the straight lines $x - 3y + 1$ as the equation (c) $y = 1$ (c) $y = 3x + 9$ (c) $y = 3x + 9$ (c) $y = 3x + 9$ (c) $x - y - 1 = 0, x + y - 1$ (d) None of these internally in the ratio 3:4 by the line (c) $\frac{36}{7}$ (c) $\frac{36}{7}$	(d) $x-5y = 0$ present the same line, if d $a = b$ or $a+b+c = 0$ = 0 and $2x + 5y - 9 = 0$ and having infinite (d) None of these itive x-axis is (d) None of these ned to the axes are -1 = 0 e + x + 2y = k, then k is (d) $\frac{31}{7}$ through B is

r www.studentbro.in

Advance Level

54. For the straight lines given by the equation (2+k)x + (1+k)y = 5 + 7k, for different values of k which of the following statements is true [IIT 1971] (a) Lines are parallel (b) Lines pass through the point (-2, 9)(c) Lines pass through the point (2,-9)(d) None of these 55. The line joining two points A(2,0), B(3,1) is rotated about A in anti-clockwise direction through an angle of 15°. The equation of the line in the new position, is (b) $x - \sqrt{3}y - 2 = 0$ (c) $\sqrt{3}x + y - 2\sqrt{3} = 0$ (d) $x + \sqrt{3}y - 2 = 0$ (a) $\sqrt{3}x - y - 2\sqrt{3} = 0$ If the slope of a line passing through the point A(3,2) be 3/4, then the points on the line which are 5 units away from A, are[IIT 1965] 56. (a) (5,5),(-1,-1)(b) (7,5),(-1,-1) (c) (5,7), (-1,-1)(d) (7,5),(1,1) 57. The equation of a line passing through the point of intersection of the lines x + 5y + 7 = 0, 3x + 2y - 5 = 0 and perpendicular to the line 7x + 2y - 5 = 0 is given by [Rajasthan PET 1987; MP PET 1993] (a) 2x - 7y - 20 = 0(b) 2x + 7y - 20 = 0(c) -2x + 7y - 20 = 0 (d) 2x + 7y + 20 = 058. Equations of diagonals of square formed by lines x = 0, y = 0, x = 1 and y = 1 are [MP PET 1984] (b) y = x, x + y = 2 (c) $2y = x, y + x = \frac{1}{3}$ (d) y = 2x, y + 2x = 1(a) y = x, y + x = 159. If the middle points of the sides BC, CA and AB of the triangle ABC be (1, 3), (5, 7) and (-5, 7), then the equation of the side AB is (a) x - y - 2 = 0(b) x - y + 12 = 0(c) x + y - 12 = 0(d) None of these 60. Given the four lines with equations x + 2y = 3, 3x + 4y = 7, 2x + 3y = 4 and 4x + 5y = 6, then these lines are [IIT 1980] (a) Concurrent (b) Perpendicular (c) The sides of a rectangle (d) None of these 61. The equation of straight line passing through (-a, 0) and making the triangle with axes of area ' T'_{i} is (a) $2Tx + a^2y + 2aT = 0$ (b) $2Tx - a^2y + 2aT = 0$ (c) $2Tx - a^2y - 2aT = 0$ (d) None of these 62. The points A(1, 3) and C(5, 1) are the opposite vertices of rectangle. The equation of line passing through other two vertices and of gradient 2, is [Rajasthan PET 1991] (a) 2x + y - 8 = 0(b) 2x - y - 4 = 0(c)2x - y + 4 = 0(d) 2x + y + 7 = 063. The intercept cut off from γ -axis is twice that from x-axis by the line and line is passes through (1, 2) then its equation is [AMU 1972; Rajasthan PET 1985] (b) 2x + y + 4 = 0(a) 2x + y = 4(c) 2x - y = 4(d) 2x - y + 4 = 0The equation of line, which bisect the line joining two points (2, -19) and (6, 1) and perpendicular to the line joining two points (-1, 64. 3) and (5, -1), is [Rajasthan PET 1987] (a) 3x - 2y = 30(b) 2x - y - 3 = 0(c) 2x + 3y = 20(d) None of these

Get More Learning Materials Here : 📕

65.	The vertices of a triangle <i>O</i>	<i>BC</i> are (0,0), (-3,-1) and (-1,-3) r	espectively. Then the equation	on of line parallel to <i>BC</i> which is at $\frac{1}{2}$
	unit distant from origin and	cuts <i>OB</i> and <i>OC</i> , is		[IIT 1976]
	(a) $2x + 2y + \sqrt{2} = 0$	(b) $2x + 2y - \sqrt{2} = 0$	(c) $2x - 2y + \sqrt{2} = 0$	(d) None of these
66.	The equation of line whose	mid point is (x_1, y_1) in between the	e axes, is	
	(a) $\frac{x}{x_1} + \frac{y}{y_1} = 2$	(b) $\frac{x}{x_1} + \frac{y}{y_1} = \frac{1}{2}$	(c) $\frac{x}{x_1} + \frac{y}{y_1} = 1$	(d) None of these
67.	The intercept of a line betw	veen the coordinate axes is divided	d by the point (–5, 4) in the ra	tio 1:2. The equation of the line will be
				[IIT 1986]
60	(a) $5x - 8y + 60 = 0$	(b) $8x - 5y + 60 = 0$	-	
68.		gh origin of a quadrilateral formed	-	
	(a) $3x - 2y = 0$	(b) $2x - 3y = 0$	(c) $3x + 2y = 0$	
69.		s of an isosceles right angled triang	gle whose hypotenuse is $3x +$	+4y = 4 and the opposite vertex of the
	hypotenuse is (2, 2), will be			[MNR 1986]
		(b) $7x + y - 12 = 0$		
70.	•	ough the point $A(2,-7)$ meets the	line <i>BC</i> whose equation is $3x$	·
	equation to the line AC so t		() 00 50 510 0	[IIT 1971]
		(b) $52x + 89y - 519 = 0$		
71.	Equation of the line which p internally in the ratio 5:3 by	0	d the portion of the line inter	cepted between the axes is divided [AMU 1973; Dhanbad Engg. 1971]
	(a) $9x + 20y + 96 = 0$	(b) $20x + 9y + 96 = 0$	(c) $9x - 20y + 96 = 0$	(d) None of these
72.	A line is such that its segme	ent between the straight lines $5x -$	y - 4 = 0 and $3x + 4y - 4 = 0$	is bisected at the point (1, 5), then its
	equation is			[Roorkee 1988]
	(a) $83x - 35y + 92 = 0$	(b) $35x - 83y + 92 = 0$	(c) $35x + 35y + 92 = 0$	(d) None of these
73.	A(-1,1), B(5,3) are opposit	e vertices of a square in <i>xy</i> -plane.	The equation of the other dia	agonal (not passing through A, B) of the
	square is given by			[EAMCET 1993]
	(a) $x - 3y + 4 = 0$	(b) $2x - y + 3 = 0$	(c) $y + 3x - 8 = 0$	(d) $x + 2y - 1 = 0$
74.	The point $P(a,b)$ lies on the	e straight line $3x + 2y = 13$ and the	point $Q(b, a)$ lies on the strai	ght line $4x - y = 5$, then the equation
	of line PQ is			[MP PET 1999]
	(a) $x - y = 5$	(b) $x + y = 5$	(c) $x + y = -5$	(d) $x - y = -5$
75.	If $P(1+t/\sqrt{2}, 2+t/\sqrt{2})$ be	any point on a line then the rang	ge of values of <i>t</i> for which th	e point P lies between the parallel lines
	x + 2y = 1 and $2x + 4y = 15$			
	(a) $-\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$	(b) $0 < t < \frac{5\sqrt{2}}{6}$	(c) $-\frac{4\sqrt{2}}{3} < t < 0$	(d) None of these
76.	The equations of the sides	AB, BC and CA of the $\triangle ABC$ are	y - x = 2, $x + 2y = 1$ and $3x + 2y = 1$	+y+5=0 respectively. The equation of
	the altitude through <i>B</i> is			
	(a) $x - 3y + 1 = 0$	(b) $x - 3y + 4 = 0$	(c) $3x - y + 2 = 0$	(d) None of these

r www.studentbro.in

77.	One side of a square of length <i>a</i> is inclined to the	<i>x</i> -axis at an angle α with one of the vertices of the square at the origin. The
	equation of a diagonal of the square is	
	(a) $y(\cos \alpha - \sin \alpha) = x(\cos \alpha + \sin \alpha)$	(b) $y(\cos \alpha + \sin \alpha) = x(\cos \alpha - \sin \alpha)$
	(c) $y(\sin \alpha + \cos \alpha) - x(\sin \alpha - \cos \alpha) = a$	(d) $y(\sin \alpha + \cos \alpha) + x(\sin \alpha - \cos \alpha) = a$
78.	Straight lines $3x + 4y = 5$ and $4x - 3y = 15$ intersection.	ect at the point A. Points B and C are chosen on these lines such that $AB = AC$.
	Determine the possible equations of the line BC	assing through the point (1, 2) [IIT 1990]
	(a) $x - 7y + 13 = 0$ and $7x + y = 9$	(b) $x + 7y + 13 = 0$ and $6x - y = 9$
	(c) $x - 7y + 12 = 0$ and $4x + 3y = 9$	(d) $x - 6y + 11 = 0$ and $7x - y = 9$
79.	Ū .	oint (p, q) and the equations to the sides AB and AC are respectively
	px + qy = 1 and $qx + py = 1$. Then the equation 1	-
	(a) $(2pq-1)(px+qy-1) = (p^2+q^2-1)(qx+py-1)(qx$	
	(c) $(pq-1)(px+qy-1) = (p^2+q^2-1)(qx+py-1)$	
80.	If a variable line drawn through the point of inter	ection of straight lines $\frac{x}{\alpha} + \frac{y}{\beta} = 1$ and $\frac{x}{\beta} + \frac{y}{\alpha} = 1$ meets the coordinate axes in A
	and <i>B</i> , then the locus of the mid-point of <i>AB</i> is	
	(a) $\alpha\beta(x+y) = xy(\alpha+\beta)$ (b) $\alpha\beta(x+y) = 2x$	$(\alpha + \beta)$ (c) $(\alpha + \beta)(x + y) = 2\alpha\beta xy$ (d) None of these
81.	Equation of the hour hand at 4 O' clock is	
	(a) $x - \sqrt{3}y = 0$ (b) $\sqrt{3}x - y = 0$	(c) $x + \sqrt{3}y = 0$ (d) $\sqrt{3}x + y = 0$
82.	The points (1, 3) and (5, 1) are two opposite vertic	as of a rectangle. The other two vertices lie on the line $y = 2x + c$, then the other
	vertices and <i>c</i> are	
	(a) $(1,1),(2,3)$ and $c = 4$ (b) $(4,4),(2,0)$ and	c = -4 (c) (0,0), (5,4) and $c = 3$ (d) None of these
		Angle between two Straight lines
		Basic Level
		Dasic Level
83.	The angle between the lines $y = (2 - \sqrt{3})x + 5$ and	$y = (2 + \sqrt{3})y = 7$ is
05.	(a) 30° (b) 60°	
0.4		
84.	The angle between the lines $x \cos \alpha_1 + y \sin \alpha_1 =$	
	(a) $(\alpha_1 + \alpha_2)$ (b) $(\alpha_1 - \alpha_2)$	(c) $2\alpha_1$ (d) $2\alpha_2$
85.	Angle between the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$	is [MP PET 1995]
	() = -1 b $() = -1 2ab$	$(1) -1 a^2 - b^2$
	(a) $2 \tan^{-1} \frac{b}{a}$ (b) $\tan^{-1} \frac{2ab}{a^2 + b^2}$	(c) $\tan^{-1} \frac{a-b}{a^2+b^2}$ (d) None of these
86.	The angle between the two lines $y - 2x = 9$ and	r + 2y = -7, is [Rajasthan PET 1981, 85, 86; MP PET 1984]
	(a) 60° (b) 30°	(c) 90° (d) 45°

Get More Learning Materials Here : 📕

r www.studentbro.in

87.	The obtuse angle between	the lines $y = -2$ and $y = x + 2$	S		[Rajasthan PET 1984
	(a) 120°	(b) 135°	(c) 150°	(d) 160°	
8.	The acute angle between	the lines $y = 3$ and $y = \sqrt{3}x + 9$	is	[Rajas	than PET 1984, 87, 8
	(a) 30°	(b) 60°	(c) 45°	(d) 90°	
9.	Angle between $x = 2$ and	x - 3y = 6 is			[MNR 198
	(a) ∞	(b) $\tan^{-1}(3)$	(c) $\tan^{-1}\left(\frac{1}{3}\right)$	(d) None of the	56
).	The angle between the lin	es $a_1x + b_1y + c_1 = 0$ and $a_2x + b_1y + c_1 = 0$	$b_2 y + c_2 = 0$ is		[MP PET 199
	(a) $\tan^{-1} \frac{a_1 b_2 + a_2 b_1}{a_1 a_2 - b_2 b_1}$	(b) $\cot^{-1} \frac{a_1 a_2 + b_1 b_2}{a_1 b_2 - a_2 b_1}$	(c) $\cot^{-1} \frac{a_1 b_1 - a_2 b_2}{a_1 a_2 + b_1 b_2}$	(d) $\tan^{-1} a_1 b_1 - a_1 a_2 + a_1 a_2 + a_2 a_2 a_2 + a_2 a_2 a_2 + a_2 a_2 a_2 a_2 a_2 a_2 a_2 a_2 a_2 a_2$	$\frac{a_2b_2}{b_1b_2}$
l.	If the lines $2x + 3ay - 1 = 0$	0 and $3x + 4y + 1 = 0$ are mutua	ly perpendicular, then the val	ue of ' <i>a</i> ' will be	[MNR 197
	(a) $\frac{1}{2}$	(b) 2	(c) $-\frac{1}{2}$	(d) None of the	56
2.	The lines $a_1x + b_1y + c_1 = 0$	and $a_2x + b_2y + c_2 = 0$ are perp	endicular to each other if		[MP PET 199
	(a) $a_1b_2 - b_1a_2 = 0$	(b) $a_1a_2 + b_1b_2 = 0$	(c) $a_1^2 b_2 + b_1^2 a_2 = 0$	(d) $a_1b_1 + a_2b_2 =$	= 0
3.	The angle between the st	traight lines $x - y\sqrt{3} = 5$ and $\sqrt{3}$	x + y = 7 is		
	(a) 90 <i>°</i>	(b) 60°	(C) 75°	(d) 30°	
4.	The angle between the lin	es $2x - y + 3 = 0$ and $x + 2y + 3$	= 0 is		[Kerala (Engg.) 200
	(a) 90 <i>°</i>	(b) 60°	(c) 45°	(d) 30°	
5.	The lines $y = 2x$ and $x = 1$	-2y are			[MP PET 199
	(a) Parallel	(b) Perpendicular	(c) Equally inclined to	axes (d) Coincident	
6.	The line which is parallel t	o <i>x</i> -axis and crosses the curve y	$=\sqrt{x}$ at an angle of 45° is		[Roorkee 199
	(a) $x = 1/4$	(b) $y = 1/4$	(c) $y = 1/2$	(d) $y = 1$	
7.		es whose intercepts on the axes		ly, is	
	(a) $\tan^{-1} \frac{a^2 - b^2}{ab}$	(b) $\tan^{-1}\frac{b^2-a^2}{2}$	(c) $\tan^{-1} \frac{b^2 - a^2}{2ab}$	(d) None of the	ese
3.	The line $3x + 2y = 9$ inter-	sects the axes in A and B . If O is	the origin, then $\angle OAB$ equations	als	
	(a) $\tan^{-1}(1/3)$	(b) 45°	(c) $\tan^{-1}(2/3)$	(d) $\tan^{-1}(3/2)$	
Э.	The angle between two lir	the sine is $\frac{\pi}{4}$. If the slope of one of	them be $\frac{1}{2}$, then the slope of	the other line is	
	(a) $1, -\frac{1}{3}$	(b) $-1, \frac{1}{2}$	(c) $-\frac{1}{3},3$	(d) None of the	ese
			vance Level		
		AU			

100. A vertex of equilateral triangle is (2, 3) and equation of opposite side is x + y = 2, then the equation of one side from rest two is

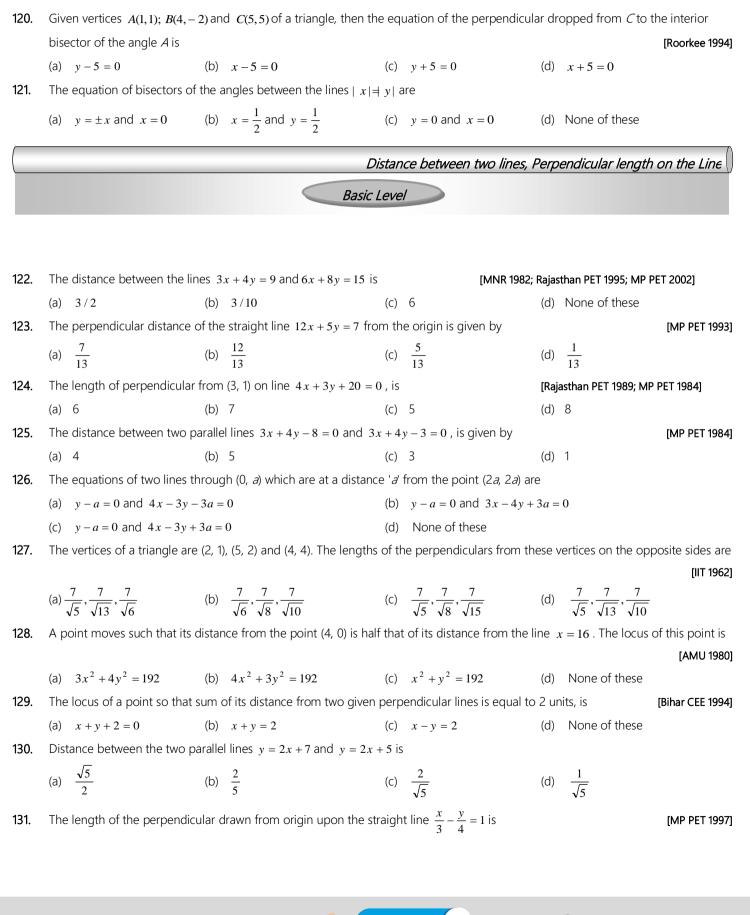
CLICK HERE

≫

Regional www.studentbro.in

r www.studentbro.in

		נוו	T 1975]
	(a) $y-3 = 2(x-2)$ (b) $y-3 = (2-\sqrt{3})(x-2)$ (c)	$y-3 = (\sqrt{3}-1)(x-2)$ (d) None of these	
101.	. Coordinates of the vertices of a quadrilateral are $(2, -1), (0, 2), (2, 3)$	and (4, 0) . The angle between its diagonals will be [II	T 1986]
	(a) 90° (b) 0° (c)	$\tan^{-1}(2)$ (d) $\tan^{-1}\left(\frac{1}{2}\right)$	
102.	. In what direction a line be drawn through the point (1, 2) so that	its point of intersection with the line $x + y = 4$ is at a dis	stance
	$\frac{\sqrt{6}}{3}$ from the given point	[IIT 1966; MNI	R 1987]
	(a) 30° (b) 45° (c)	60° (d) 75°	
103.	. The line passing through the points $(3,-4)$ and $(-2,6)$ and a line pa	ssing through (-3,6) and (9,-18), are [AM	U 1974]
	(a) Perpendicular (b)	Parallel	
	(c) Makes an angle 60° with each other (d)	None of these	
104.	. Equation of the two straight lines passing through the point (3, 2) and	making an angle of 45° with the line $x - 2y = 3$, are [AM	U 1978]
	(a) $3x + y + 7 = 0$ and $x + 3y + 9 = 0$ (b)	3x - y - 7 = 0 and $x + 3y - 9 = 0$	
	(c) $x + 3y - 7 = 0$ and $x + 3y - 9 = 0$ (d)	None of these	
105.	. The diagonals of the parallelogram whose sides are $lx + my + n = 0$,	lx + my + n' = 0, $mx + ly + n = 0$, $mx + ly + n' = 0$ include a	n
	angle		
		[EAMCE	T 1994]
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c)	$\tan^{-1}\left(\frac{l^2 - m^2}{l^2 + m^2}\right)$ (d) $\tan^{-1}\left(\frac{2lm}{l^2 + m^2}\right)$	
106.	The sides AB, BC, CD and DA of a quadrilateral are $x + 2y = 3$, $x = 3$	1, $x - 3y = 4$, $5x + y + 12 = 0$ respectively. The angle betw	leen
	diagonals AC and BD is	[Roorke	e 1993]
	(a) 45° (b) 60° (c)	90° (d) 30°	
107.	. One diagonal of a square is along the line $8x - 15y = 0$ and one of	its vertex is (1, 2). Then the equation of the sides of the so	quare
	passing through this vertex, are	נוו	T 1962]
	(a) $23x + 7y = 9$, $7x + 23y = 53$ (b)	$23x - 7y + 9 = 0 , \ 7x + 23y + 53 = 0$	
	(c) $23x - 7y - 9 = 0$, $7x + 23y - 53 = 0$ (d)	None of these	
108.	. The parallelism condition for two straight lines one of which	is specified by the equation $ax + by + c = 0$ the other	being
	represented parametrically by $x = \alpha t + \beta$, $y = \gamma t + \delta$ is given by		
	(a) $a\gamma - b\alpha = 0, \beta = \delta = c = 0$ (b) $a\alpha - b\gamma = 0, \beta = \delta = 0$ (c)	$a\alpha + b\gamma = 0$ (d) $a\gamma = b\alpha = 0$	
109.	If straight lines $ax + by + p = 0$ and $x \cos \alpha + y \sin \alpha - p = 0$ include	an angle $\frac{\pi}{4}$ between them and meet the straight line	
	$x \sin \alpha - y \cos \alpha = 0$ in the same point, then the value of $a^2 + b^2$ is	equal to	
	(a) 1 (b) 2 (c)	3 (d) 4	
110.	The ends of the base of an isosceles triangle are at $(2a, 0)$ and $(0, a)$	The equation of one side is $x = 2a$. The equation of the	other
	side is		
	(a) $x + 2y - a = 0$ (b) $x + 2y = 2a$ (c)	3x + 4y - 4a = 0 (d) $3x - 4y + 4a = 0$	


111.	If <i>a,b,c</i> are in harmonic	progression, then straight line $\frac{x}{a}$	$+\frac{y}{h}+\frac{1}{c}=0$ always passes through	gh a fixed point, that point is [MP PET
	1999]	C.		
	(a) (-1, -2)	(b) (-1, 2)	(C) (1,-2)	(d) $(1, -1/2)$
112.	Angles made with the >	x-axis by two lines drawn through	the point (1, 2) and cutting the lir	the $x + y = 4$ at a distance $\frac{1}{3}\sqrt{6}$ from
	the point (1, 2) are			[DCE 1995]
	(a) $\frac{\pi}{6}$ and $\frac{\pi}{3}$	(b) $\frac{\pi}{8}$ and $\frac{3\pi}{8}$	(c) $\frac{\pi}{12}$ and $\frac{5\pi}{12}$	(d) None of these
			Bi	sectors of Angle between two Lines
			Basic Level	
110	The equation of the line	a which biggets the obtains applied	hotuson the lines 2 + 4 + 0 -	
113.	(a) $(4 - \sqrt{5})x - (3 - 2\sqrt{5})x$	-	between the lines $x - 2y + 4 = 0$ a (b) $(4 + \sqrt{5})x - (3 + 2\sqrt{5})x$	
		,, , , , , , , , , , , , , , , , , , ,		$(y + (2 + 4\sqrt{5})) = 0$
	(c) $(4 + \sqrt{5})x + (3 + 2\sqrt{5})x$		(d) None of these	
114.	Equation of angle bised	ctors between <i>x</i> and <i>y</i> -axes are		[MP PET 1984]
	(a) $y = \pm x$	(b) $y = \pm 2x$	(c) $y = \pm \frac{1}{\sqrt{2}} x$	(d) $y = \pm 3x$
115.	Equation of angle bised	tor between the lines $3x + 4y - 7$	7 = 0 and $12x + 5y + 17 = 0$ are	[Rajasthan PET 1995]
	(a) $\frac{3x+4y-7}{\sqrt{25}} = \pm \frac{12}{\sqrt{25}}$	$\frac{2x+5y+17}{\sqrt{169}}$	(b) $\frac{3x+4y+7}{\sqrt{25}} = \frac{12x+7}{\sqrt{25}}$	5y + 17 169
	(c) $\frac{3x+4y+7}{\sqrt{25}} = \pm \frac{12}{\sqrt{25}}$	$\frac{2x+5y+17}{\sqrt{169}}$	(d) None of these	
116.	The equation of the bis	sector of the acute angle between	the lines $2x - y + 4 = 0$ and $x - 2$	2y = 1 is
	(a) $x + y + 5 = 0$	(b) $x - y + 1 = 0$	(c) $x - y = 5$	(d) None of these
117.	The vertices of a triang	le are $A(-1, -7)$, $B(5, 1)$ and $C(1, -4)$	4). The equation of the internal b	bisector of the angle $\angle ABC$ is
	(a) $3x - 7y - 8 = 0$	(b) $x - 7y + 2 = 0$	(c) 3x - 3y - 7 = 0	(d) None of these
118.	The equation (s) of the b	pisector (s) of that angle between th	The lines $x + 2y - 11 = 0$, $3x - 6y - 11 = 0$	-5 = 0 , which contains the point (1, -3) is
	(a) $3x = 19$	(b) $3y = 7$	(c) $3x = 19$ and $3y = 7$	(d) None of these
		A	dvance Level	

- **119.** The equations of two equal sides of an isosceles triangle are 7x y + 3 = 0 and x + y 3 = 0 and the third side passes through the point (1, -10). The equation of the third side is [IIT 1984]
 - (a) x 3y 31 = 0 but not 3x + y + 7 = 0

(c) 3x + y + 7 = 0 or x - 3y - 31 = 0

- (b) 3x + y + 7 = 0 but not x 3y 31 = 0
- (d) Neither 3x + y + 7 = 0 nor x 3y 31 = 0

🕀 www.studentbro.in

Get More Learning Materials Here :

🕀 www.studentbro.in

									• Strai
	$3\frac{2}{5}$	(d)		$4\frac{2}{5}$	(C)	<u>-</u> ;	(b) $3\frac{1}{5}$	2 5	(a)
[Rajasthan PET 200				= 0 is	4y – 9	x + 4y + 7 = 0 and $3x$	parallel lines $3x$	e between the p	Dist
	$\frac{3}{5}$	(d)		$\frac{5}{12}$	(C)		(b) $\frac{12}{5}$		(a)
-3y - 35 = 0 is	0 and 7 <i>x</i> –	-1 =	e lines $4x + y$	ection of the line	f interse	oint (3, 5)to the point	ne joining the poi	uation of the lin	The
[Roorkee 198						(8,34)	points (0,0) and	tant from the p	equ
ese	None of the	(d)	an be said	Nothing can be	(C)	se	(b) False	le	(a)
[Kerala (Engg.) 200				5	4 = 0 is	7 = 0 and $15x + 9y +$	lines $5x + 3y - 7$	e between the l	Dist
	$\frac{35}{2\sqrt{34}}$	(d)		$\frac{35}{3\sqrt{34}}$	(C)	$\frac{1}{\sqrt{34}}$	(b) $\frac{1}{3\sqrt{3}}$	<u>5</u> 34	(a)
[MP PET 199					is	2y = 1 and $6x + 9 = 4$	the lines $3x - 2y$	tance between [.]	The
	$\frac{6}{\sqrt{13}}$	(d)		$\frac{4}{\sqrt{13}}$	(C)	$\frac{1}{52}$	(b) $\frac{11}{\sqrt{52}}$	1 52	(a)
[Orissa JEE 200		= 1 is	ne line $x + y =$	parallel to the lir	isured p	rom the point (1, 1) me	e 2x - 3y = 4 fro	tance of the line	The
	6	(d)		$\frac{1}{\sqrt{2}}$	(C)	=	(b) $\frac{5}{\sqrt{2}}$	$\overline{2}$	(a)
				S	3y + 5 i	$es \ y = 2x + 4 \text{ and } 6x = 2x + 4 \text{ and } 7x $	the parallel lines	tance between	The
	7√5 / 15	(d)		$3/\sqrt{5}$	(C)		(b) 1	/ \sqrt{3}	(a)
		is	x + 9y + 8 = 0	= 0 and 6x + 9	+ 3 <i>y</i> − 4	espect to the lines $2x$	int (8,–9) with res	sition of the poi	The
e	s of the line	nt side	on the differer	Point lies on th	(b)	e lines	ame side of the li	int lies on the sa	(a)
			nese	None of these	(d)		of the lines	int lies on one c	(C)
				n	-5). Thei	By = 12 and point $A(3)$	$+3y = 7, \ 2x + 3y$	er the lines $2x$ -	Cor
dicular distance froi	of perpend	Sum		(b)			een the lines	int 'A' lies betwe	(a)
								$= 5 / \sqrt{13}$	the lir
			nese	None of these	(d)	3	lines is $19 / \sqrt{13}$	stance between	(C)
				vel	nce Lei	Adv			
	ce from the	distan	y equal to its o	numerically eq	3, –2) is	stance from the point	-		
[Roorkee 197		< 0	11	$x^{2} + y^{2} - 11x$	(b)		bcus of the point i $6x + 64y + 182 = 0$		
		0 = 0		$x + y - \Pi x$ None of these		= 0	-	$x^{2} + 13y^{2} - 83$	
				None of these	. ,		-	-	
ГШТ 10 ⁻			3y = 10 are	lino 4r + 3v =	com tho	a lia at a unit distance			
	(1 3) (_7 1	(d)				n lie at a unit distance			
11)	(1,3),(-7,1)	(d) n from	,11)	(-3,1),(-7,11)	(C)	1),(7,11)	(b) (3,1)	1),(-7,11)	(a)
		. ,	,11)	(-3,1),(-7,11)	(C)	1),(7,11) point <i>P</i> . The algebraid	(b) (3,1)	1),(–7,11) ole line passes t	(a) A v

143.	A line <i>L</i> passes through the	points (1, 1) and (2, 0) and anothe	r line L' passes through $\left(\frac{1}{2}, C\right)$	0) and perpendicular to <i>L</i> . Then the area
	of the triangle formed by th	ne lines <i>L, L</i> ' and <i>y</i> -axis, is		[Rajasthan PET 1991]
	(a) $\frac{15}{8}$	(b) $\frac{25}{4}$	(c) $\frac{25}{8}$	(d) $\frac{25}{16}$
144.	Equation of a straight line of	on which length of perpendicular f	rom the origin is four units a	nd the line makes an angle of 120° with
	the <i>x</i> -axis, is			[MNR 1986]
	(a) $x\sqrt{3} + y + 8 = 0$	(b) $x\sqrt{3} - y = 8$	(c) $x\sqrt{3} - y = 8$	(d) $x - \sqrt{3}y + 8 = 0$
145.	Locus of the points which a	The at equal distance from $3x + 4y$	-11 = 0 and $12x + 5y + 2 =$	0 and which is near the origin is
				[MNR 1987]
	(a) $21x - 77y + 153 = 0$	(b) $99x + 77y - 133 = 0$	(c) $7x - 11y = 19$	(d) None of these
146.	The equation of the base o	f an equilateral triangle is $x + y =$		e length of the side of the triangle is ET 1995; Rajasthan PET 1999, 2000]
	(a) $\sqrt{3/2}$	(b) $\sqrt{2}$	(c) $\sqrt{2/3}$	(d) None of these
147.	If the straight line through	the point $P(3,4)$ makes an angle $\frac{2}{3}$	$\frac{\pi}{\epsilon}$ with the <i>x</i> -axis and meets	the line $12x + 5y + 10 = 0$ at Q , then the
	length <i>PQ</i> is		0	
	-	(h) 132	(5) 132	(d) 132
	(a) $\frac{12\sqrt{3}+5}{12\sqrt{3}+5}$	(b) $\frac{132}{12\sqrt{3}-5}$	(c) $\frac{1}{5\sqrt{3}+12}$	(d) $\frac{1}{5\sqrt{3}-12}$
148.	The equations of the lines t	hrough the point of intersection o	f the lines $x - y + 1 = 0$ and	2x - 3y + 5 = 0 and whose distance from
	the point (3, 2) is $\frac{7}{5}$, is			[IIT 1963]
	(a) $3x - 4y - 6 = 0$ and 4 .	x + 3y + 1 = 0	(b) $3x - 4y + 6 = 0$ and 4	4x - 3y - 1 = 0
	(c) $3x - 4y + 6 = 0$ and $4x$	x - 3y + 1 = 0	(d) None of these	
149.	A point equidistant from th	e lines $4x + 3y + 10 = 0$, $5x - 12y$	y + 26 = 0 and $7x + 24y - 50$	= 0 is [EAMCET 1994]
	(a) (1, -1)	(b) (1, 1)	(c) (0, 0)	(d) (0, 1)
150.	A line through $A(-5,-4)$	meets the lines $x + 3y + 2 = 0$	0, $2x + y + 4 = 0$ and $x - y$	y-5=0 at B,C and D respectively. If
	$\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right)^2$, then the equation of the line is		[IIT 1993]
	(a) $2x + 3y + 22 = 0$	(b) $5x - 4y + 7 = 0$	(c) $3x - 2y + 3 = 0$	(d) None of these
151.	If the equation of the locus	of a point equidistant from the po	bints (a_1,b_1) and (a_2,b_2) is (a_1,b_2)	$(a_1 - a_2)x + (b_1 - b_2)y + c = 0$, then the
	value of ' <i>c</i> ' is			[IIT Screening 2003]
	(a) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$	(b) $a_1^2 - a_2^2 + b_1^2 - b_2^2$	(c) $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$) (d) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$
152.	If p_1, p_2 and p_3 be th	e perpendiculars from the poin	ts $(m^2, 2m), (mm', m + m')$ a	and $(m'^2, 2m')$ respectively on the line
	$x\cos\alpha + y\sin\alpha + \frac{\sin^2\alpha}{\cos\alpha} =$	0, then p_1, p_2 and p_3 are in		
	(a) A.P.	(b) G.P.	(c) H.P	(d) None of these

Get More Learning Materials Here : 📕

Regional www.studentbro.in

		culars from the origin upon the strate $ heta$ respectively, then the value of the value	-	a and
	(a) a^2	(b) $3a^2$	(C) $2a^2$	(d) $4a^2$
54.	A family of lines is given distance from the point		being the parameter. The line b	belonging to this family at the maximum
	(a) $4x - y + 1 = 0$	(b) $33x + 12y + 7 = 0$	(c) $12x + 33y = 7$	(d) None of these
55.	If the point (<i>a</i> , <i>a</i>) falls be	tween the lines $ x + y = 2$, then		
	(a) $ a = 2$	(b) $ a = 1$	(C) <i>a</i> <1	(d) $ a = \frac{1}{2}$
				Concurrency of Three lines
		B	Pasic Level	
56.	The value of <i>k</i> for which	the lines $7x - 8y + 5 = 0$, $3x - 4y$	y + 5 = 0 and $4x + 5y + k = 0$ ar	re concurrent is given by [MP PET 1993]
	(a) – 45	(b) 44	(c) 54	(d) –54
57.	For what value of 'a' the	lines $x = 3, y = 4$ and $4x - 3y + a$	u = 0 are concurrent	[Rajasthan PET 1984]
	(a) 0	(b) -1	(c) 2	(d) 3
58.	The lines $15x - 18y + 1 =$	= 0,12x + 10y - 3 = 0 and $6x + 66y$	y - 11 = 0 are	[AMU 1978]
	(a) Parallel	(b) Perpendicular	(c) Concurrent	(d) None of these
59.	The lines $2x + y - 1 = 0$, $ax + 3y - 3 = 0$ and $3x + 2y - 2 = 0$	= 0 are concurrent for	[EAMCET 1994]
		(b) $a = 4$ only	(c) $-1 \le a \le 3$	
	(a) All a	(b) $u = + \text{orm} y$	(e) $1 \ge u \ge 5$	(d) $a > 0$ only
60.		h the lines $3x + 4y = 5, 5x + 4y = 4$		-
60.				-
	The value of λ for whic (a) 2	h the lines $3x + 4y = 5, 5x + 4y = 4$	4 and $\lambda x + 4y = 6$ meet at a pc (c) 4	pint is
	The value of λ for whic (a) 2	h the lines $3x + 4y = 5, 5x + 4y = 4$ (b) 1	4 and $\lambda x + 4y = 6$ meet at a pc (c) 4	bint is (d) 3
60. 61. 62.	The value of λ for whice (a) 2 Three lines $3x - y = 2, 5$ (a) 2	h the lines $3x + 4y = 5, 5x + 4y = 4$ (b) 1 x + ay = 3 and $2x + y = 3$ are con	4 and $\lambda x + 4y = 6$ meet at a pc (c) 4 accurrent, then $a =$ (c) -1	bint is (d) 3 [MP PET 1996] (d) -2
61.	The value of λ for whice (a) 2 Three lines $3x - y = 2, 5$ (a) 2	h the lines $3x + 4y = 5, 5x + 4y = 4$ (b) 1 x + ay = 3 and $2x + y = 3$ are con (b) 3	4 and $\lambda x + 4y = 6$ meet at a pc (c) 4 accurrent, then $a =$ (c) -1	bint is (d) 3 [MP PET 1996] (d) -2
61. 62.	The value of λ for which (a) 2 Three lines $3x - y = 2, 5$ (a) 2 If the lines $x + q = 0, y - 4$ (a) 1	h the lines $3x + 4y = 5, 5x + 4y = 4$ (b) 1 x + ay = 3 and $2x + y = 3$ are con (b) 3 x = 2 = 0 and $3x + 2y + 5 = 0$ are con	4 and $\lambda x + 4y = 6$ meet at a pc (c) 4 accurrent, then $a =$ (c) -1 accurrent, then the value of q with (c) 3	bint is (d) 3 [MP PET 1996] (d) -2 Il be [DCE 2002] (d) 5
61. 62.	The value of λ for which (a) 2 Three lines $3x - y = 2, 5$ (a) 2 If the lines $x + q = 0, y - 3$ (a) 1 The equation of the line	h the lines $3x + 4y = 5, 5x + 4y = 4$ (b) 1 x + ay = 3 and $2x + y = 3$ are con (b) 3 2 = 0 and $3x + 2y + 5 = 0$ are con (b) 2	4 and $\lambda x + 4y = 6$ meet at a pc (c) 4 accurrent, then $a =$ (c) -1 accurrent, then the value of q with (c) 3	bint is (d) 3 [MP PET 1996] (d) -2 Il be [DCE 2002] (d) 5
61.	The value of λ for which (a) 2 Three lines $3x - y = 2, 5$ (a) 2 If the lines $x + q = 0, y - 4$ (a) 1 The equation of the line (a) $3x + 2y - 2 = 0$	h the lines $3x + 4y = 5$, $5x + 4y = 4$ (b) 1 x + ay = 3 and $2x + y = 3$ are con (b) 3 2 = 0 and $3x + 2y + 5 = 0$ are con (b) 2 with gradient $-3/2$ which is conc	4 and $\lambda x + 4y = 6$ meet at a point (c) 4 incurrent, then $a =$ (c) -1 incurrent, then the value of q with (c) 3 current with the lines $4x + 3y -$ (c) $2y - 3x - 2 = 0$	bint is (d) 3 [MP PET 1996] (d) -2 Il be (d) 5 7 = 0 and 8x + 5y - 1 = 0 is [DCE 1999]

Get More Learning Materials Here : 💻

r www.studentbro.in

	The lines $ax + by + c = 0$,	where $3a + 2b + 4c = 0$ are of	concurrent at the point	[IIT 1982]
	(a) (1/2,3/4)	(b) (1,3)	(C) (3,1)	(d) $(3/4, 1/2)$
166.	The equations $(b - c)x + (b - c$	$(a - a)y + (a - b) = 0$ and $(b^3 - a)y + (a - b) = 0$	$(c^{3})x + (c^{3} - a^{3})y + a^{3} - b^{3} = 0$ V	vill represent the same line, if
	(a) $b = c$	(b) $c = a$	(C) $a = b$	(d) $a+b+c=0$
167.	If the lines $ax + 2y + 1 = 0$), $bx + 3y + 1 = 0$ and $cx + 4z$	y + 1 = 0 are concurrent, then <i>a</i> , <i>b</i>	<i>b, c</i> are in
	(a) A.P	(b) G.P	(c) H.P	(d) None of these
168.	If the lines $ax + y + 1 = 1$ $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$ (a) 0	0, $x + by + 1 = 0$ and $x + y$ (b) 1	+ c = 0 (<i>a</i> , <i>b</i> , <i>c</i> being distinct an (c) $\frac{1}{a+b+c}$	d different from 1) are concurrent, ther (d) None of these
	(d) 0		(c) $a+b+c$	
169.	The three straight lines av	x + by = c, bx + cy = a and cx	+ ay = b are collinear, if	[MP PET 2004]
	(a) $a+b+c=0$	(b) $b+c=a$	(c) $c+a=b$	(d) $a+b=c$
170.	The three lines $3x + 4y + $	$6 = 0; \sqrt{2}x + \sqrt{3}y + 2\sqrt{2} = 0$	and $4x + 7y + 8 = 0$ are	[Rajasthan PET 1992
	(a) Sides of a triangle	(b) Concurrent	(c) Parallel	(d) None of these
				Miscellaneous problems
			Basic Level	
171.	The coordinate of the foo	ot of perpendicular from the p	point (2, 3) on the line $x + y - 11$	= 0 are
171.	The coordinate of the foo (a) (– 6, 5)	ot of perpendicular from the p (b) (5, 6)	boint (2, 3) on the line $x + y - 11$ (c) (-5, 6)	= 0 are (d) (6, 5)
	(a) (- 6, 5)	(b) (5, 6)		(d) (6, 5)
	(a) $(-6, 5)$ The coordinate of the foo	(b) (5, 6)	(c) (-5, 6)	(d) (6, 5) + 4 are given by [MP PET 1984]
172.	(a) $(-6, 5)$ The coordinate of the foo (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$	(c) (-5, 6) he point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$	(d) (6, 5) + 4 are given by [MP PET 1984]
172.	(a) $(-6, 5)$ The coordinate of the foo (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$	(c) (-5, 6) he point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$	(d) (6, 5) + 4 are given by [MP PET 1984] (d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$
172.	(a) $(-6, 5)$ The coordinate of the foot (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ If the coordinates of the r	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$	(c) (-5, 6) he point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$ f a line intercepted between coc	(d) (6, 5) + 4 are given by [MP PET 1984] (d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$ prdinate axes (3, 2), then the equation of the
172. 173.	(a) $(-6, 5)$ The coordinate of the foot (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ If the coordinates of the r line will be (a) $2x + 3y = 12$	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$ middle point of the portion o (b) $3x + 2y = 12$	(c) (-5, 6) he point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$ f a line intercepted between coc (c) $4x - 3y = 6$	(d) (6, 5) + 4 are given by [MP PET 1984] (d) $\left(\frac{2}{3}, -\frac{1}{3}\right)$ prodinate axes (3, 2), then the equation of the [Rajasthan PET 1985; MP PET 1984] (d) $5x - 2y = 10$
172. 173.	(a) $(-6, 5)$ The coordinate of the food (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ If the coordinates of the reline will be (a) $2x + 3y = 12$ Coordinates of the foot of	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$ middle point of the portion o (b) $3x + 2y = 12$	(c) (-5, 6) he point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$ f a line intercepted between coor (c) $4x - 3y = 6$ orm (0, 0) to the line joining (<i>a</i> cos	(d) (6, 5) + 4 are given by [MP PET 1984] (d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$ prodinate axes (3, 2), then the equation of the [Rajasthan PET 1985; MP PET 1984] (d) $5x - 2y = 10$ $aa, a \sin a$) and $(a \cos \beta, a \sin \beta)$, are [IIT 1982]
172. 173.	(a) $(-6, 5)$ The coordinate of the foot (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ If the coordinates of the r line will be (a) $2x + 3y = 12$	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$ middle point of the portion o (b) $3x + 2y = 12$	(c) (-5, 6) he point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$ f a line intercepted between coc (c) $4x - 3y = 6$	(d) (6, 5) + 4 are given by [MP PET 1984] (d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$ prodinate axes (3, 2), then the equation of the [Rajasthan PET 1985; MP PET 1984] (d) $5x - 2y = 10$ $aa, a \sin a$) and $(a \cos \beta, a \sin \beta)$, are [IIT 1982]
172.	(a) $(-6, 5)$ The coordinate of the food (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ If the coordinates of the reline will be (a) $2x + 3y = 12$ Coordinates of the foot of	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$ middle point of the portion o (b) $3x + 2y = 12$ f the perpendicular drawn from	(c) (-5, 6) he point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$ f a line intercepted between coor (c) $4x - 3y = 6$ orm (0, 0) to the line joining (<i>a</i> cos	(d) (6, 5) + 4 are given by [MP PET 1984] (d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$ prodinate axes (3, 2), then the equation of the [Rajasthan PET 1985; MP PET 1984] (d) $5x - 2y = 10$ $aa, a \sin a$) and $(a \cos \beta, a \sin \beta)$, are [IIT 1982]
172. 173. 174.	(a) $(-6, 5)$ The coordinate of the food (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ If the coordinates of the reliance will be (a) $2x + 3y = 12$ Coordinates of the foot of (a) $\left(\frac{a}{2}, \frac{b}{2}\right)$ (c) $\left(\cos\frac{\alpha+\beta}{2}, \sin\frac{\alpha+\beta}{2}\right)$	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$ middle point of the portion o (b) $3x + 2y = 12$ f the perpendicular drawn from	(c) $(-5, 6)$ the point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$ f a line intercepted between coor (c) $4x - 3y = 6$ form (0, 0) to the line joining (<i>a</i> coss) (b) $\left[\frac{a}{2}(\cos \alpha + \cos \beta), \frac{a}{2}(\cos \alpha + \cos \beta), \frac$	(d) (6, 5) + 4 are given by [MP PET 1984] (d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$ prodinate axes (3, 2), then the equation of the [Rajasthan PET 1985; MP PET 1984] (d) $5x - 2y = 10$ $aa, a \sin a$) and $(a \cos \beta, a \sin \beta)$, are [IIT 1982]
171. 172. 173. 174.	(a) $(-6, 5)$ The coordinate of the food (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ If the coordinates of the reliance will be (a) $2x + 3y = 12$ Coordinates of the foot of (a) $\left(\frac{a}{2}, \frac{b}{2}\right)$ (c) $\left(\cos\frac{\alpha+\beta}{2}, \sin\frac{\alpha+\beta}{2}\right)$	(b) (5, 6) bt of the perpendicular from t (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$ middle point of the portion o (b) $3x + 2y = 12$ f the perpendicular drawn from	(c) $(-5, 6)$ he point (2,3) on the line $y = 3x$ (c) $\left(\frac{10}{37}, -10\right)$ f a line intercepted between cocc (c) $4x - 3y = 6$ om (0, 0) to the line joining (<i>a</i> cos (b) $\left[\frac{a}{2}(\cos \alpha + \cos \beta), (d) \text{ None of these}\right]$	(d) (6, 5) + 4 are given by [MP PET 1 (d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$ prodinate axes (3, 2), then the equation of [Rajasthan PET 1985; MP PET 1984] (d) $5x - 2y = 10$ (d) $5x - 2y = 10$ (e, $a \sin \alpha$) and $(a \cos \beta, a \sin \beta)$, are [IIT $\frac{a}{2}(\sin \alpha + \sin \beta)$] [Rajasthan PET 7

Get More Learning Materials Here : 📕

r www.studentbro.in

176.	The coordinates of the	foot of the perpendicular from	(x_1, y_1) to the line $ax + by + c = 0$	are [Dhanbad Engg. 1973]
	(a) $\left(\frac{b^2 x_1 - aby_1 - aby_1}{a^2 + b^2}\right)$	$\left(\frac{a^2y_1 - abx_1 - bc}{a^2 + b^2}\right)$	(b) $\left(\frac{b^2 x_1 + aby_1 + ac}{a^2 + b^2},\right)$	$\frac{a^2y_1 + abx_1 + bc}{a^2 + b^2} \bigg)$
	(c) $\left(\frac{ax_1+by_1+ab}{a+b},\frac{a}{a+b}\right)$	$\frac{ax_1 - by_1 - ab}{a + b} \bigg)$	(d) None of these	
177.	The area of the triang	e bounded by the straight line	$ax + by + c = 0$, $(a, b, c \neq 0)$ and the	e coordinate axes is [AMU 2000]
	(a) $\frac{1}{2 bc }$	(b) $\frac{1}{2} \frac{c^2}{ ab }$	(c) $\frac{1}{2} \frac{b^2}{ ac }$	(d) 0
178.	The image of the poin	t (4, -3)with respect to the line	y = x is	[Rajasthan PET 2002]
	(a) (-4,-3)	(b) (3,4)	(C) (-4,3)	(d) (-3,4)
79.	The triangle formed by	/ the lines $x + y = 0$, $3x + y = 4$,	x + 3y = 4 is	[Rajasthan PET 2002
	(a) Isosceles	(b) Equilateral	(c) Right -angled	(d) None of these
80.	The diagonals of a par	allelogram PQRS are along th	e lines $x + 3y = 4$ and $6x - 2y = 7$. Then <i>PQRS</i> must be a [IIT 1998]
	(a) Rectangle	(b) Square	(c) Cyclic quadrilateral	(d) Rhombus
81.	Two points A and B h	nave coordinates (1, 1) and (3, -	-2) respectively. The coordinates c	of a point distant $\sqrt{85}$ from <i>B</i> on the line
	through <i>B</i> perpendicul	ar to <i>AB</i> are		[AMU 2000]
	(a) (4, 7)	(b) (7, 4)	(c) (5, 7)	(d) (-5, -3)
32.	The line $3x + 2y = 24$	meets <i>y</i> -axis at A and <i>x</i> -axis at	B. The perpendicular bisector of A	<i>B</i> meets the line through (0, -1) parallel to
	<i>x</i> -axis at <i>C</i> . The area o	f the triangle <i>ABC</i> is		
	(a) 182 <i>sq</i> .units	(b) 91 <i>sq</i> . units	(c) 48 <i>sq</i> . units	(d) None of these
3.	The area of a parallelo	gram formed by the lines $ax \pm a$	$by \pm c = 0$, is	[IIT 1973]
	(a) $\frac{c^2}{ab}$	(b) $\frac{2c^2}{ab}$	(c) $\frac{c^2}{2ab}$	(d) None of these
34.	The area of triangle fo	rmed by the lines $x = 0, y = 0$ a	nd $\frac{x}{a} + \frac{y}{b} = 1$, is	[Rajasthan PET 1984]
	(a) <i>ab</i>	(b) <i>ab</i> /2	(c) 2 <i>ab</i>	(d) <i>ab</i> /3
35.				line <i>L</i> and coordinate axes is 5. The
	equation of the line L i		5 ,	[IIT 1980;Rajasthan PET 1997]
	(a) $x + 5y = 5$		(c) $x - 5y = 5$	-
36.		joes the following two successiv	ve transformations	
	(i) Reflection about the	5		distance 2 units along the positive x -axis
	Then the final coordina	2		[MNR 1987; UPSEAT 2000]
	(a) (4, 3)	(b) (3, 4)	(c) (1, 4)	(d) $\left(\frac{7}{2}, \frac{7}{2}\right)$
			Advance Level	

187. A straight line moves so that the sum of the reciprocals of its intercepts on two perpendicular lines is constant, then the line passes through
 [IIT 1977]

CLICK HERE

》

Regional www.studentbro.in

	(a) A fixed point	(b) A variable point	(c) Origin	(d) None of these						
188.	The line $2x + 3y = 12$ meet	s the <i>x</i> -axis at <i>A</i> and <i>y</i> -axis at <i>B</i> . Th	e line through (5, 5) perpend	icular to <i>AB</i> meets the <i>x</i> -axis, <i>y</i> -axis and						
	the AB at C, D and E respec	tively. If \mathcal{O} is the origin of coordination of the second se	ates, then the area of <i>OCEB</i> is	[IIT 1976]						
	(a) 23 sq. units	(b) $\frac{23}{2}$ sq.units	(c) $\frac{23}{3}$ sq. units	(d) None of these						
189.	The locus of a point <i>P</i> which	h divides the line joining (1, 0) and	$(2\cos\theta, 2\sin\theta)$ internally in the	ne ratio 2 : 3 for all θ , is a						
				[IIT 1986]						
	(a) Straight line	(b) Circle	(c) Pair of straight lines	(d) Parabola						
190.	Line <i>L</i> has intercepts <i>a</i> and	<i>b</i> on the coordinate axes. When th	ne axes are rotated through a	given angle keeping the origin fixed,						
	the same line <i>L</i> has intercept	ots p and q , then		[IIT 1990; Kurukshetra CEE 1998]						
	(a) $a^2 + b^2 = p^2 + q^2$	(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$	(c) $a^2 + p^2 = b^2 + q^2$	(d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$						
191.	One side of a rectangle lies sides are	along the line $4x + 7y + 5 = 0$. Tw	vo of its vertices are (–3, 1) an	d (1, 1). Then the equations of other						
	(a) $7x - 4y + 25 = 0,4x + 7$	7y = 11 and $7x - 4y - 3 = 0$	(b) $7x + 4y + 25 = 0,7y + $	4x - 11 = 0 and $7x - 4y - 3 = 0$						
	(c) $4x - 7y + 25 = 0,7x + 4$	4y - 11 = 0 and $4x - 7y - 3 = 0$	(d) None of these							
192.	Two consecutive sides of a	parallelogram are $4x + 5y = 0$ and	7x + 2y = 0. If the equation	to one diagonal is $11x + 7y = 9$, then						
	the equation of the other d	iagonal is								
	(a) $x + 2y = 0$	(b) $2x + y = 0$	(C) x - y = 0	(d) None of these						
193.	If the sum of the distances	of a point from two perpendicular	lines in a plane is 1, then its lo	ocus is						
			[IIT 1992;	Karnataka CET 1999; DCE 2000, 01]						
	(a) Square	(b) Circle	(c) Straight line	(d) Two intersecting lines						
194.	A pair of straight lines draw	n through the origin form with the	e line $2x + 3y = 6$ an isosceles	right angled triangle, then the lines						
	and the area of the triangle	thus formed is								
	(a) $x - 5y = 0, 5x + y = 0, 4$	$\Delta = \frac{36}{13}$	(b) $3x - y = 0, x + 3y = 0,$	$\Delta = \frac{12}{17}$						
	(c) $5x - y = 0, x + 5y = 0, 4$	$\Lambda = \frac{13}{5}$	(d) None of these							
195.	<i>P</i> is a point on either of the	two lines $y - \sqrt{3} x = 2$ at a distant	nce of 5 units from their poin	t of intersection. The coordinates of the						
	foot of the perpendicular fr	om P on the bisector of the angle	between them are	[Roorkee 1992]						
	(a) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$ or $\left(0, \frac{4}{2}\right)$	$\left(\frac{-5\sqrt{3}}{2}\right)$ depending on which the p	point <i>P</i> is taken	(b) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$						
	(c) $\left(0, \frac{4-5\sqrt{3}}{2}\right)$			(d) $\left(\frac{5}{2}, \frac{5\sqrt{2}}{2}\right)$						
196.	A ray of light passing throu	ugh the point (1, 2) is reflected on	the <i>x</i> -axis at a point <i>P</i> and p	asses through the point (5, 3). Then the						
	abscissa of the point P is			[Orissa JEE 2003]						
	(a) -3	(b) 13/3	(c) 13/5	(d) 13/4						

The point moves such that the area of the triangle formed by it with the points (1, 5) and (3, -7) is 21 sq. unit. The locus of the 197. point is (b) 6x - y + 32 = 0 (c) x + 6y - 32 = 0 (d) 6x - y - 32 = 0(a) 6x + y - 32 = 0If for a variable line $\frac{x}{a} + \frac{y}{b} = 1$ the condition $a^{-2} + b^{-2} = c^{-2}$ (*c* is a constant) is satisfied, then locus of foot of perpendicular drawn 198. from origin to the straight line is [Raiasthan PET 1999] (a) $x^2 + y^2 = c^2/2$ (b) $x^2 + y^2 = 2c^2$ (c) $x^2 + y^2 = c^2$ (d) $x^2 - y^2 = c^2$ 199. Let L be the line 2x + y = 2. If the axes are rotated by 45° , then the intercepts made by the line L on the new axes are respectively [Roorkee 1998] (c) $2\sqrt{2}$ and $2\sqrt{2}/3$ (d) $2\sqrt{2}/3$ and $2\sqrt{2}$ (a) $\sqrt{2}$ and 1 (b) 1 and $\sqrt{2}$ The graph of the function $\cos x \cos(x+2) - \cos^2(x+1)$ is 200. [IIT 1997 Re-Exam] (a) A straight line passing through $(0, -\sin^2 1)$ with slope 2 (b) A straight line passing through (0,0) (c) A parabola with vertex $(1, -\sin^2 1)$ (d) A straight line passing through the point $\left(\frac{\pi}{2}, -\sin^2 1\right)$ and parallel to the x-axis 201. Two lines are drawn through (3, 4), each of which makes angle of 45° with the line x - y = 2, then area of the triangle formed by these lines is [Rajasthan PET 2000] (b) 9/2 (c) 2 (a) 9 (d) 2/9 202. A point starts moving from (1, 2) and its projections on x and y-axes are moving with velocities of 3 m/s and 2 m/s respectively. Its locus is [Roorkee 1999] (a) 2x - 3y + 4 = 0(b) 3x - 2y + 1 = 0(c) 3y - 2x + 4 = 0 (d) 2y - 3x + 1 = 0**203.** If (-2, 6) is the image of the point (4, 2) with respect to line L= 0, then L=[EAMCET 2002] (a) 3x - 2y + 5(b) 3x - 2y + 10(c) 2x + 3y - 5(d) 6x - 4y - 7204. The area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 equals (c) $\frac{1}{|m+n|}$ (d) $\frac{1}{|m-n|}$ (a) $\frac{\mid m+n\mid}{\left(m-n\right)^2}$ (b) $\frac{2}{|m+n|}$ 205. A line AB makes zero intercept on x-axis and y-axis and it is perpendicular to another line CD, 3x + 4y + 6 = 0. The equation of line AB is [Karnataka CET 2001] (b) 4x - 3y + 8 = 0 (c) 4x - 3y = 0(a) y = 4(d) 4x - 3y + 6 = 0**206.** Area of the parallelogram whose sides are $x \cos \alpha + y \sin \alpha = p$, $x \cos \alpha + y \sin \alpha = q$, $x \cos \beta + y \sin \beta = r$ and $x\cos\beta + y\sin\beta = s$ is (a) $\pm (p-q)(r-s)\operatorname{cosec}(\alpha-\beta)$ (b) $(p+q)(r-s)\operatorname{cosec}(\alpha+\beta)$ (c) $(p+q)(r+s)\operatorname{cosec}(\alpha-\beta)$ (d) None of these If the transversal $y = m_r x$; r = 1, 2, 3 cut off equal intercepts on the transversal x + y = 1, then $1 + m_1, 1 + m_2, 1 + m_3$ are in 207. (c) H.P. (a) A.P (b) G.P. (d) None of these

CLICK HERE

🕀 www.studentbro.in

Regional www.studentbro.in

208.	If the extremities of the base	e of an isosceles triangle are the po	oints (2 <i>a</i> , 0) and (0, <i>a</i>) and the e	equation of one of the sides is $x=2a$,					
	then the area of the triangle	e is								
	(a) $5a^2sq$. units	(b) $\frac{5a^2}{2}$ sq. units	(C)	$\frac{25 a^2}{2} sq.$ units	(d) None of these					
209.	The coordinates of the four	vertices of a quadrilateral are (-2, 4	4), (—1	, 2),(1, 2) and (2, 4) taken	in order. The equation of the line					
	passing through the vertex	(–1, 2) and dividing the quadrilatera	al in tv	wo equal areas is						
	(a) $x + 1 = 0$	(b) $x + y = 1$	(C)	x - y + 3 = 0	(d) None of these					
210.	If a ray travelling along the line	e $x=1$ gets reflected from the line $x +$	<i>y</i> = 1	, then the equation of the	line along which the reflected ray travels					
	is									
	(a) $y = 0$	(b) $x - y = 1$	(C)	x = 0	(d) None of these					
211.	If $bx + cy = a$, where a , b , c and b	re of the same sign, be a line such tha	t the a	area enclosed by the line ar	nd the axes of reference is $\frac{1}{8}$ unit ² , then					
	(a) b, a, c are in G.P.	(b) $b,2a,c$ are in G.P.	(c)	$b, \frac{a}{2}, c$ are in A.P.	(d) $b,-2a,c$ are in G.P.					
212.	Determine all values of	α for which the point (α, α^2)	lies	inside the triangle fo	rmed by the lines $2x + 3y - 1 = 0$,					
	x + 2y - 3 = 0,5x - 6y - 1 =	0			[IIT 1992]					
	(a) $-3/2 < \alpha < -1$ and $1/2$		(b) $-3/2 < \alpha < 1$ and $-1/2 < \alpha < 1$							
	(c) $-3 < \alpha < -1$ and $2 < \alpha$		(d) None of these							
213.	The symmetry in curve x^3 +	$+y^{3} = 3axy$ along								
	(a) <i>x</i> -axis	(b) <i>y</i> -axis		Line $y = x$	(d) Opposite quadrants					
214.	(a) x-axis If m_1, m_2 are the roots of	the equation $x^2 - ax - a - 1 = 0$,		-	(d) Opposite quadrants e formed by the three straight lines					
214.	(a) <i>x</i> -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = a$	the equation $x^2 - ax - a - 1 = 0$,	, ther	n the area of the triang						
214.	(a) x-axis If m_1, m_2 are the roots of	the equation $x^2 - ax - a - 1 = 0$,	, ther	-						
214.	(a) <i>x</i> -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = a$	the equation $x^2 - ax - a - 1 = 0$, $a(a \neq -1)$ is	, ther (b)	n the area of the triang						
214. 215.	(a) <i>x</i> -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = a$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < a < a < a < a < a < a < a < a < $	the equation $x^2 - ax - a - 1 = 0$, $a(a \neq -1)$ is	, ther (b) (d)	the area of the triangle $\frac{-a^2(a+2)}{2(a+1)}, \text{ if } a < -1$ $\frac{a^2(a+2)}{2(a+1)}, \text{ if } a < -2$						
	(a) <i>x</i> -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = a$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < a < a < a < a < a < a < a < a < $	the equation $x^2 - ax - a - 1 = 0$, $a(a \neq -1)$ is < -1 ute angle θ with the positive direct	, ther (b) (d)	the area of the triangle $\frac{-a^2(a+2)}{2(a+1)}, \text{ if } a < -1$ $\frac{a^2(a+2)}{2(a+1)}, \text{ if } a < -2$	e formed by the three straight lines					
	(a) x-axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = a$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < a$ A line which makes an acc	the equation $x^2 - ax - a - 1 = 0$, $a(a \neq -1)$ is < -1 ute angle θ with the positive direct	, ther (b) (d)	the area of the triangle $\frac{-a^2(a+2)}{2(a+1)}, \text{ if } a < -1$ $\frac{a^2(a+2)}{2(a+1)}, \text{ if } a < -2$	e formed by the three straight lines					
	(a) x-axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = a$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < a < a$ A line which makes an accumulation $x = 6$ at R and $y = 8$ at S , the (a) $PR = 3 \sec \theta$	the equation $x^2 - ax - a - 1 = 0$, $a(a \neq -1)$ is < -1 ute angle θ with the positive direction	(b) (d) (d) (b)	the area of the triangle $\frac{-a^{2}(a+2)}{2(a+1)}, \text{ if } a < -1$ $\frac{a^{2}(a+2)}{2(a+1)}, \text{ if } a < -2$ of <i>x</i> -axis is drawn through $PS = 4 \operatorname{cosec} \theta$	e formed by the three straight lines					
	(a) x-axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = a$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < a < a$ A line which makes an accumulation $x = 6$ at R and $y = 8$ at S , the (a) $PR = 3 \sec \theta$ (c) $PR + PS = \frac{2(3 \sin \theta + 4)}{\sin 2\theta}$	the equation $x^2 - ax - a - 1 = 0$, $a(a \neq -1)$ is (x - 1) $a(a \neq -1)$ is $a(a \neq -1)$ is $a(a \neq -1)$ is $a(a \neq -1)$ is $a(a \neq -1)$ is	(b) (d) (d) (b) (d)	the area of the triangle $\frac{-a^{2}(a+2)}{2(a+1)}, \text{ if } a < -1$ $\frac{a^{2}(a+2)}{2(a+1)}, \text{ if } a < -2$ of <i>x</i> -axis is drawn throu $PS = 4 \operatorname{cosec} \theta$ $\frac{9}{(PR)^{2}} + \frac{16}{(PS)^{2}} = 1$	e formed by the three straight lines					

two lines 2x + y - 2 = 0 and 4x + 5y = 20. The possible number of positions of the point *P* is

(a) Six (b) Five (c) Four (d) Eleven

CLICK HERE

≫

Assianment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	с	b	b	d	b	b	а	с	а	а	d	с	а	с	с	b	d	b	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	d	С	а	b	а	b	а	С	b	d	b	d	а	а	а	d	С	b	а
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	а	d	b	а	а	b	а	а	С	а	d	С	b	а	b	а	а	b	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	b	а	а	а	а	b	а	а	а	С	а	С	b	а	b	a,c	а	а	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
С	b	b	b	а	С	b	b	b	b	С	b	а	а	b	С	С	d	С	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
С	d	b	b	b	С	С	С	b	d	С	С	а	а	а	b	b	а	С	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	b	а	b	d	С	d	а	b	С	а	b	а	С	b	а	d	а	d	а
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
а	b	d	а	b	С	а	С	С	а	а	b	а	С	С	а	а	С	а	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	С	а	С	d	a,b,c,d	а	b	а	b	b	b	а	b	b	а	b	d	а	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200

Get More Learning Materials Here : 📕

CLICK HERE

Regional www.studentbro.in

Indices and Surds 59

С	b	b	b	b	b	а	С	b	b	а	С	а	а	b	С	а	С	С	d
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216				
b	а	а	d	С	а	С	b	С	а	b,d	а	С	a,c,d	a,b,c,d	а				

